Zero ETL is one of the popular use cases in database world. It incurs multiple data transfer and copy overhead currently. SVK’s zero-ETL framework aims to reduce or eliminate the extra data transfer and copy in the ETL path by providing the easy interface to allow Data Modelers and AI engineers to perform data intensive tasks e.g. Synthetic Data Generation, ML calculation and Transformations near to the data source. This reduces the need of big data extract and load requirements enabling faster and TCO effective ETL Pipelines
Samsung has developed DSS, a rack-scalable, very high read-bandwidth-optimized, Amazon S3-compatible object storage solution.
It utilizes a disaggregated architecture, enabling independent scaling of storage and compute. DSS is designed to make the most of system-level design, and Samsung’s best SSDs, to get the maximum performance while minimizing OPEX costs.
• Large-scale, high-throughput training
• Image Analytics
• Audio/Video AI
• Metaverse
• High throughput storage access- 3x better than NFS
• 20% better than GPU accelerated Leading Enterprise Filesystem
• True Scalable solution
• Lower TCO with less storage nodes serving more clients
Optimizing Data Architecture with Samsung SVK & VMware Greenplum
Ivan Novick, Director, VMware & David McIntyre, Director, Samsung & Pramod Peethambaran, Director, Engineering, Samsung
About this talk :
High Performance Object Storage (HPOS) stack enables disaggregated storage over multiple CMM-HC (Samsung’s computational storage drives). A data centric solution abstracting which computational function runs in which accelerator layer (i.e. CPU, GPU, XPU or SmartSSD) with ease of scale. Samsung’s HPOS solution provides reference solution for Video AI applications requiring in-storage video pre-processing. And for Data Analytics use case providing high performance for unstructured/object data in data lake.
Posted whitepaper in 2023 MemCon
Increasingly, as AI technology evolves into more sophisticated applications, training dataset sizes continue to grow exponentially. In order to scale storage and network infrastructure commensurately to deliver the data required and avoid unbearable training cycle times, there is a need for a new storage concept and innovative solution to address this technology gap. DSS Gen2 and beyond provides a potential next generation architecture and solution to alleviate this bottleneck.
Another issue that is major impediment to data center scaling is power utilization. And since one of the key storage consumer is data storage, DSS technology not only plan to optimize server power utilization but also partner and leverage Samsung’s new high capacity SSDs which has one of the highest density in the world.
2022 OCP Global Summit
With the advent of new application workloads related to Big Data including AI/ML, IoT, Video, security and many other machine generated data, there is a strong incentive for companies as well as governments to mine this treasure trove of data to extract value. Innovative companies taking on these storage challenges have tried storing Big Data into data lakes and moving them into locally attached storage for analysis but due to the sheer size of the data set this turns out to be too time consuming. Traditional network data storage also have been explored but overcoming inherent scaling and performance bottlenecks are difficult. DSS provides an innovative solution to the problem by designing purpose built storage that only targets these specific workloads.
2021 OCP Global Summit
High Performance and Hardware Acceleration – With exponential data generation rate, specifically in applications like Deep learning, AI the demand for storage with high-bandwidth and great scalability that supports unstructured data format is increasing. To fulfill this need Samsung proposes DSS storage solution, which implements object Key-Value API on top NVMeOF SSD. The support of storage remote access protocols facilitates the disaggregation. Therefore, storage can be easily scaled. Besides object storage support and scalability, our architecture can provision the bandwidth demands for each application on each client server. This paper introduces our DSS Storage systems that support high-bandwidth per capacity for object-format data with an effortlessly scale-up feature. DSS uses some methods to deterministically provide bandwidth to the client sessions to mitigate the contention and starvation. Therefore, our storage design is essential for large concurrent multi-session workloads with intensive reads such as AI training.
Go back to Main Page
Cookie | Duration | Description |
---|---|---|
cookielawinfo-checkbox-analytics | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics". |
cookielawinfo-checkbox-functional | 11 months | The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional". |
cookielawinfo-checkbox-necessary | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary". |
cookielawinfo-checkbox-others | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other. |
cookielawinfo-checkbox-performance | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance". |
viewed_cookie_policy | 11 months | The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data. |